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Secrion 1.

THE equation

du | d | d%u

=t @g-l- -==0,
transformed to polar coordinates by putting

x=rsindcos @, y=rsindsin@, z=rcosd,
becomes, as is well known, ‘
d%u du 1 d% d%u du

W—I— cot ﬂgo‘-i-m W+1‘zm‘+2ra—;=0,

which may be written in the form

{(sin "%)2+ (3%)2+(sin 0)’7'%(7’%4—1)}@&:0; )
and if it be assumed that
‘ u=u,+ur4ur’+..... R
then by substituting this value of % in either of the two equations last written, we find
that u, is a function of 4 and ¢ satisfying the equation

{(sin0(%)24-(3%)2+n(n+l)(sin0)2}u,,=0,. @)

which, under a slightly different form, is commonly called the Equation of Laprack’s
FPunctions.

This equation was first solved in finite terms by Mr. HARGREAVE *, but in a form very
inconvenient for practical applications. A solution free from this objection was after-
wards obtained by Professor BooLef, by a method explained in his memoir “On a
General Method in Analysis,” Philosophical Transactions, 1844. Lastly, in the second
volume of the Journal referred to, the same mathematician gave two more solutions, one
of which however is reducible, as he states, to Mr. HARGREAVE'S form ; the other, though
much more convenient than this, is still for most purposes probably less useful than that
given in the first volume, from which it differs essentially in form, as well as in the
method by which it is deduced.

* Philosophical’ Transactions, 1841.
+ Cambridge and Dublin Mathematical Journal, vol. i. p. 10.
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44 PROFESSOR DONKIN ON THE EQUATION OF LAPLACE'S FUNCTIONS, ETC.

In the following pages I have treated the equation (2.) by a very simple method *.
The result bears a general resemblance to Professor BooLr’s first solution, and I conceive
that the two forms must be capable of being identified by the assumption of a proper
relation between the arbitrary functions; but I am not able at present to show this
identity.

Some further investigations are added, which it is unnecessary to notice beforehand.

1. Putting £ for d% in equation (2.), we have
. dN\? .
{(sm 0@) + £ +n(n+1)(sin H)z}u,,=0. Coe oo (8)
In the case of n=0, this becomes
. dN\? d?
-((sméc—la) +/£2)u0=0, or 7;;"-[—1%%:0
(where t=1log tan %) Hence

[ 2vest —kVZ1
w=C(tang)  +G(tang)” ... (4)
If, however, £=0, we should have ‘
]
u0=01+0210.gtan§, N ()

¥ It may be worth while to give a preliminary illustration of this method (which contains no novelty
excopt in detail), by applying a similar process to the well-known equation

d*u o n(n+1)\ _
ot (=" Ju=0

This may be written in the form

{(D—g)(D+g)+k2}u=o, ngg_ﬂ);
(+2)(p-D=(-2) o+

hence if we put u= (D—- Z-;)v, and then operate on each side with (D—- -’E)—l, we have
x

{(D—- ”_1)(D+ _—)+7c2}v—(]) g)"‘o.

Assuming 0 as the value of the right-hand member, and then putting v:( -2

now

-1
w, and 80 on. succes-
&

sively, it 13 obvious that we shall ultimately have

32'
(132+7c2>z= ;
hence, observing that D— 1= #Da-?, we obtain finally,
Z

u:z"’(Di)n(Cl sin 2+ C, cos ka),

which agrees with the result obtained by Professor Boour’s general method (Philosophical Transactions,
1844).
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which is the complete solution of (2.) in the particular case in which #, does not con-
tain @, and #=0.

. d . . ‘
But putting P for k£ in (4.), and arbitrary functions of ¢ instead of C,, C,, we have

- ) _—
uo:f(qo—l-\/—l.logtan §>+F<<p—\/-—1.logtan%); ... (8)
instead of which we may evidently write |
— 6 - ]
uo=f<e¢“/“tan -2-)+Ij‘(e“q“’“tan 5), e e (1)

as well as other forms. Either of these is the complete value of u, in the case of n=0.
2. Returning to the general case, if we put for shortness

. d\? .
(sm 035> +n(n+1)(sin §)=p,,
it is evident that

. Bon=nets - e o ... (8)
and also, since

2
(sin Y Ed@ —+n cos 0) (sin é ;;—ié —7 COo8 0) = (sin 0 0—2‘%) +n(n+1)(sin > —n?,

. . d
if we put w,= sin d 7 +n cos

we have T S
from which, changing » into —=, and observing (8.), we get
' @, =g,
on the other hand, changing into n—1 in (9.),
By @y (0= 1) =gy

Comparing the last two results, we see that the operation =, possesses the following
property, namely,

om0 =m, @y —=12% . . . . . . . (10.)
Now the equation to be solved (8.), art. 1, is ‘_
(e@_y+0*+,=0. . . . . . . . . (11.)

Let w,—=w,v, and let the operation =" be performed on each side; assuming for the
present that ;0 may be put =0 without ultimate loss of generality, we obtain

(w_wwutn’+Ep=0;
and this, by virtue of (10.), becomes
’ (Bpar®—ury + (=1 +F=0;
which, compared with (11.), gives the relation v=w,_,, and consequently, since »,=w,,
Uy =Ty Up—1 5
or U, = (sin 0 5% +n cos 0) Uy

MDCCCLVIL. H
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This relation is true whatever be the value of n. But as we are now supposing n a
positive integer, it is evident that we have
U=,y @@ Uy o« . . . ... (12)
where u, is given by (6.) or (7.) of the last article in the general case, and by (5.) in the
case in which #, is a function of ¢ without ¢.
This solution contains two arbitrary functions in the former case, and two arbitrary

constants in the latter. It is therefore, in general, the complete solution. (See, how-

ever, arts. 8, 9, 17, &ec.)
3. The operative symbol »,,_,...w@,, written at length, is

. . d .
(sm Agé-l—n co8 0) (sm 025+ (n—1) cos 0) (sm 0%—!— cos 0). .o (138)
Now it is evident that
., jm 1 d
sin 4 4-m cos =g Z{E(Sln )

(the subject of operation being of course omitted on both sides); and if this be put in
the form
1 g
gy S0 ggsin (sin ,
it will be easily seen that the expression (13.) is equivalent to
1 .. d . n '
m(sméwsml)) R (14.)

which may also be put in the less symmetrical form
1 . d\" .
Eag ((sm 6’)2070) sin 4.

Either of these forms has the peculiarity, as compared with (18.), of being intelligible
without supposing # a positive integer (setting aside the difficulties of general differen-
tiation). - ‘

4. The results of the preceding articles may be summed up as follows :—

The complete solution of the equation

{(sin 0 %) Fa(n+1)(sin 9)2}@0,,:0 is

u,=(sin ())"”(sin H‘%sin A>R<C,+C2 log tan %) 5o - . (158
and the complete solution of the equation

{(sin 0%)2-1— (%)2—}—%(72—{— 1)(sin 0)2}11,,,:0 is

#,= (sin ())""(sin ﬂ% sin 0) "{f<e“"/:" tan %) +F<3'“"f:‘ tan g) } .. (16.)

It may be observed that (15.)is deducible from (16.) by taking f(w)#C,-l——;—Cz log ,
F(z)=4%C,log «.
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5. The expression (16.) may be compared with the following result of Professor
BooLr’s first solution * :— '

7 U =F<{b, _w__—.-_’_"._).e‘ﬁh)’
')

= (i) oo (55 e (5}

and w=cosd. I have stated above my impression that this form must be capable of
transformation into identity with (16.); but it is probable that this can only be effected
by means of some not obvious theorem of differentiation. Examples of such theorems
will be seen below (arts. 14 and 16).

where F(w, ¢

Secrion II.
6. I proceed to discuss some particular applications of the formule obtained above.
If the expression (1—2r cos 4+72)"* be developed in the form
Potpr+pr+...,

then p, satisfies the equation of LAPLACE’S functions, and does not contain ¢. Hence Pn
must be given by the expression (15.), art. 4, if the constants be properly assumed; and
since it is evident that C, must be =0 in this case, we have

po=(sin 0)—n<sin 0% sin o)". 1,

where ¢, is a function of n.

This form of p, may be independently verified, and ¢, determined at the same time,
as follows :—

Put #(sin §)~'=p, then

(127 cos 0-+2) *= (14 (cot 0—)) ™,

and if we put cot =¢, this may be written

—p 1
2
vl
where ¢ is to be treated as constant till after all operations. Now in general,if P, Q

be any symbols whatever, quantitative or operative, we know that Pf(Q)—lp:—.f (PQ%,).

. 1 .
Hence it is evident that since o/ 1= - and — —(sm 9) s the above expression

is equivalent to

Y
p 8in 6 —sind
AT W

and therefore thisis a symbolical form of (1—2r cos d+7%)"*. Restoring the value of o
after development, we find that the coefficient of 7" is

* Cambridge and Dublin Journal, vol. i. p. 18.
H2
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133 n 3 (smé)‘”(smé sm(J) e

In other words, if we put »,=(sin 6)™"(sin 4 7 4 in ¢)*.1, then

2 n
(1—27r cos 0+7*) "t =v,+v, % +, {—‘—2 +.. 4w, Té;?z +.....

(From this it is easy to deduce the relation v,=(2n—1)cosd.v,_,—(n—1)%,_, by means
of the known relation between the coefficients in the above series and those in the
development of (1—72)(1—27 cos 8+7)7%.)

7. Adopting the notation of the last article, we have

e”“‘“"aos‘“"(sm 0) —'—Tl— e ”dt(sm o)+t

=1 (=)

= (sind)i(1—2r cos 0-47%)" 5

Hence this theorem, which will be useful afterwards. The coefficient of 1n the
development of (1—2r cos 0+7‘2)“b;l" is
| (sin0)*(sin 0% sin gy(singy. . . . . . . . (I7)
8. Let us next consider the development of the expression
{1—2r(cosdcosd+sindsindcosp)+r*}% . . . . . (18)

Since the coefficient of 7" is necessarily expressible in the form

9o+ ¢,c08 @4q,co8 20+ ... 4 ¢, cos ng,

and must also satisfy the equation (2.), art. 1, we find, on substitution in that equation,
that ¢, must be a solution of the equation

{(sinog-é)2+n(n+1)(sino)e__z-e}uFo.. L 19y

I proceed to consider this equation in a general manner, without reference, in the first
instance, to the problem immediately in hand.

Since the equation (19.) only differs from (3.), art. 1, in having —4* instead of &2, we
may apply the process used in the solution of that equation. We thus get

. .od ” A AN
u”_—__(sn'l A)“"(Sln 0 70 Sim 0) (Cl (tan E) +C2 (COt 5) ) . PR (20.)
Now, although this expression appears to contain two arbitrary constants, it will be
shown presently, that when ¢ is an integer and not greater than , it really contains only

one. This is seen immediately to be the case when =0, and may be easily verified in
other 51mple cases, such as 1=1, n=2, &ec.
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9. In fact, the process of art. 2 gives

Uy =Wy, =T, 0 Uy_g= ... =,

n—1 fNot

n—m+1 U, —m?

where u,_,, satisfies the equation

(wn_mw_(,,_m-l—(n——m)“’—z’”)u,,_»m:: 0;
and in general we can only arrive at an integrable form by taking m=n. But when ¢
is an integer not greater than n, we shall get an integrable form by taking m so as to
satisfy the condition (n—m)*=¢*. Suppose ¢ positive and less than #, and take m=n—: ;
we then have for the solution of (19.),

Uy =TTy By Uy,

where , satisfies the equation @@_u;=0, or

.od o, \ VR

(\sm 0 55 +icos 0) (sm 87—t cos 0>u,~=0
the integration of this is easy, and the result is

;= C,(sin 8)'4C,y(sin é)ﬁSIn DEGZEE

so that, in the case considered, the integral of (19.) may be expressed in the form
u,=(sin ) (sin 0 g5sin o) (sin 09 (C, 4 G fan(sino) =) L 21
(for @, ®,_... @y, 18 equivalent to (sin 0)‘"<sin 00% sin H)n_t(sin d)' (see art. 3))

It is evident that the expression (21.) contains two independent arbitrary constants,
whatever be the value of &. And ¢ being supposed a positive integer, the second term
will always involve a logarithmic function ; hence the form (20.), which involves no such
function, cannot be the complete solution of the equation (19.), and therefore we shall
not really limit its generality by putting C,=0. . Moreover, since the coefficient of
r"cosip in the development of (18.) cannot contain any logarithmic function, it follows
that, for the purpose of that development, we must put C,=0 in the expression (21.).

Comparing the two forms thus obtained for the coefficient of 7”cosip, we obtain inci-
dentally the following theorem, namely,

(siné)gésin0>z(tan%>a=c(sin0)2", e e e e (22)

¢ being a constant, of which the value will appear afterwards.

The preceding investigation shows that the assumption =;'0=0 (instead of the
general value C(sin 4)7") is liable in certain cases to limit the generality of the result. I
shall return to this point presently, but proceod now to complete the development of
the expression (18.).

10. Since the coefficient of 7" cos i@ must contain ¢ and ¢ symmetrically, and satisfy
both the equation (19.) and a similar equation in ¢, it is evident that it must be of the
form f{8)f(¢). Hence, by means of the conclusions of art. 9, we arrive at the following
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d .
result: put, for convenience, sin ¢ 58N 0=0, sin I -5 d@' sin =0'; then the coefficient of

r" in the development of (1—27'(cos 0 cos §' -+ sin dsin ¢ cos qo)+7'2)“% may be expressed in
either of the two forms,

6 ol 2
(“sﬁmelﬁffe') 6"9"’{a0+ a, tan d tan ; cos o+, (tan tan > cos 2¢
) o ! (23.)
“+... -|—a,,<ta,n —tan 5) cos ngbj
S gsind) e {6,0"0"1 4-¢,0" 0™ !(sin @ sin §')* cos ¢ 1 (24.)

+ .. 40O (sin dsin ' )¥ cos ip+ ... 4¢,(sin 4 sin 8™ cos np} J
and it only remains to determine the constants.

11. For this purpose we may adopt a process of which the first part is taken from
Larrace. Let cosd=p, cosd =/, and suppose the coefficient of 7" cos? ¢ in the deve-
lopment of (1—2?(@(}/-{—\/ T—p*/1—p%.cos @)—I—W) -% to be itself developed in a series
of powers and products of w and «'. It is only necessary to ascertain the term inde-
pendent of &, @', and the term containing the product uw'; and for this end we may

write the above expression thus, (1—2r(up'+ cos @)+72)-%, since the terms p?, w? cannot
aﬁ'ect the required result; and this again may (for the present purpose) be considered

equal to (1—27cos o+7*)~ 5+ pu'r(1—2r cos p47*)~%; and if we put 2 cos qo-—-x-l—— so

that 1—2r cos p-7*=(1 —-m)(l +§)’ and develope in the usual manner, we easily find
the following results :—
1st, if n—4 be even, the term independent of w, w' in the coefficient of " cos g is

g 1%.3%.5%...(n+i—1)%.1%.82.5%.. (n—i—1)*
) 1.2.3...(n+1%).1.2.3...(n—1) ?

and the term containing wy' vanishes.
2nd, if n—7 be odd, the term independent of w, ' vanishes, and the term con-
taining pp' is
12.3%...(n +17)2.12.3%,...(n—17)?
"1.2.3...(n11).1.2.3...(n—1) s

the factor 2 to be omitted in each case when 7=0.
12. On the other hand, the coeflicient of 7" cos ¢p is (art. 10)

¢(sindsin d)70""O " (sin d)*(sin 4)*; . . . . . . . (25.)
and we may find the term independent of u, ', and the term involving pp' in the deve-
lopment of this, as follows:—

1t is easily found, from the theorem of art. 7, that
(sin 6)~'0"~(sin 6)*=1.2...(n—i)(sin 8)" X (coefficient of 7"~* in the development of
(1—2r cos §+7*)"“*¥); and for our present purpose we may put sin /=1, and

(1 =27 cos 047%)~C+H) = (1 J-42)~0+D) +(2i41)ur(1 +r2)"(‘+%).
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Hence it is easily found that when n—¢ is even, the term independent of w, @' in'(25.) is
6. 12.32.5% . (n—i—1)(204+1)2(243)... (n+i—1)*;
and when n—1 is odd, the term involving pu' is
Gl 12,8250 (m—d). (20 +1)( 2+ 3 ). (n+i)
If these expressions be equated to those obtained in art. 11, we find that whether n—i
be even or odd the value of ¢ is ’

9 12.32.5%,..(2i—1)?
'1.2.3...(n—4).1.2.3...(n +1)

the factor 2 being omitted when ¢=0.
13. We have then the following result :—
The coefficient of 7" cos ¢p in the development of

(1—27"(cos 0 cos § 4 sin 4 sin ¢ cos ¢)+7'2)‘% is

12.32,52,,..(2—1)2 : o A=y a—iy =il i A\ iy A 2 3
2.1.2'3."(71__2.)‘1‘2.3.“(n+i)(smé)smé) 0" '@"i(sin 0)*(sin d)*, . . (26.)

. . d . . d . . . .
where ©= sin 0 2 sin 4, O'=sind 27 Sin ¢'; and with respect to the numerical coefficient,

it is to be observed that when ¢=0 the factor 2 is to be omitted, and the numerator
considered to become unity. The extreme values of ¢ are of course 0 and #, and the
term 1.2.3...(n—%) is to be taken =1 when i=n.

14. It is now easy to ascertain the values of the coefficients a,, @,, &c. in the form
(28.), art. 10. But first it is necessary to prove that

(sinAd%sin0>n(tang)n_—.’1.3.5...(2%—1)(sin0)?”. (2T

We have proved this already (art. 9, equation (22.)), except in so far as the numerical
coefficient was left undetermined, so that we have only to establish its value. Now the
expression on the left of the above equation may be written

NN NP AU
(sin 4)~! ((sm W?l@) sin b’-\tan 2) ;

. 0 — oo d ' .
and if we put cot 4=¢, so that tan 5_—:\/ 14-#*—t, and (sin 0)* 7= _Edi’ the equation (27.)

becomes

(_)n<gd;>”( vﬁ_—ﬂ_;-t)":l.&&..(%f:l) :
1+1 a+o) |
and since it is only the value of the coefficient that is in question, it will be enough to
prove this when ¢=0, . e. to show that the coeflicient of ¢ in the development of
(1= v T5Ey
Vi+e2
Now, expanding the numerator by the binomial theorem, the above

1.3.5...(2n—1)

S 77123..n
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expression becomes

it e TR TR e () (L)

and if we develope each term and collect the coeflicient of #*, we find that it is

n(n—1)(n—2)(n—3) nn—1)...(n—2i+1)

n( 1)
S + 22.42 + + 2‘2 4Q 62 (21:)2 + ey

14

a series of which the sum * is }._Si%_é(:ﬁrl_) The truth of (27.) is therefore established.
15. It follows that
9"(tan %)1=6""i9"<tan g)=1 3...(2i—1)6"(sin 0)*,

and consequently the coefficient of #”cos¢p may also be expressed in the form

1330 _2)21 (nH(siné)sin()’)""G”G’”(tana) (tanel) .. (28)

the factor 2 being omitted as before when ¢=0.

The law of the numerical coefficients in this case is remarkable. For if the expres-
sion (14-cos ¢)” be developed in the form A 4 A, cos p+A,cos 294 .. + A, cos ng, it will
be found that

A=1.2.3..0.1.85...(20—1).75 :

e (n—1).1.2.3...(n+1)

(omitting the 2 when ¢=0),

so that we may express the law of the development of
(1 — 27 (cos 8 cos ¢'4sin 4 sin 4 cos ¢)+1‘2)'
as follows :—the coeflicient of " is
1 A NR/ L d . AP
133135 @n=T) (sin ) "(sin ¢') (sm 0 75 Sin 9) (sm ¢ 7z sin 0’) U,,
where '

U,,:Ao-l-A,cosMangtang+A2c0s2¢(tang> (tan ) +...4A, coanb(tan >n(tan02’)

and A, is the coefficient of coség in the development of (14-cos ¢)".

Although this form of the development follows a more simple and remarkable law
than that of art. 13, it is evident that for actual calculation it would be much less con-
venient, since the number of operations is much greater, and the differentiations more
complex. But as the complete explicit form of the development is known indepen-
dently, this consideration is not of much practical importance.

. 1.3.. (Zn 1) .

15 is the coefficient of 2" in the development of 1— Zx) ; OW

(1—2.70)_*=—"((1—.a7)2—:v2’)‘*=(1—56)“l +§(1—-x)_3xz+m (17—x)’5m4+ v

and if each term be developed and the coefficient of " collected, the result is the series in the text.
The equation (27.) probably admits of some simpler demonstration, which I have failed to perceive.
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16. Professor BooLg, in the paper above referred to, obtains the following expression
for the coefficient of 7"cos ip; namely,

2f(w)f(w)
1.2....(0—19).1.2...(n+3)’
2 ./ d L )
where f(@):(l—(ﬁ)ﬂ,«»’”““(@i wH(Lbp. L (29.)

Here the numerical coefficients are the same as in the form just given. It follows,
therefore, that the expression on the right of (29.) must be equivalent to

(sin 0)’"<sin 9% sin 0)n<tan g)z
This equivalence, and that expressed by equation (27.), art. 14, are instances of theo-
rems by no means obvious or easy to verify directly. (See art. 5.)
For actual calculation, Prefessor BooLe’s form would be preferable to either of mine;
for though the number of operations is much greater than in the form (26.), their result

may be assigned with much greater facility. But considered merely as an analytical
expression, the form (26.) is the simplest of the three.

Secrion I11.

17. It was shown above (art. 9), that the expression

. .o.d o » 0\¢ AN
w,=(sin )™ (sm 0 7 sin 0) <Cl (tan —2-) +C, (tan é) )
fails in certain cases to represent the complete solution of the equation

{(sin 4 d%)?+n(n+ 1)(sin ¢)*— z'z}u,,z 0,
namely, when ¢ is an énfeger, and not greater than n. (Similarly, the expression
u=0C,¢"+C,e* fails to give the complete solution of ((%)2—z'2> u=0, when ¢=0.)
Tt is desirable, therefore, to investigate the solution of the equation in a more general
manner. Putting, as before, sin 0%—{—% cos §=w,, the equation to be integrated is |
(zo_+0—u,=0. . . . . . . . . . (30)
Let u,=w,v, then (wnw_nwn—}- (n*— “‘)wn)@= 0,

and ‘any value of v which satisfies this, will give a value of w, satisfying (30.). Now
w_,m,~+n* is identically the same as »,_,w_,_,,+(n—1)* (10.), art. 2; hence the equation
becomes

wn(mn—lw—(n—l)_"(n_1)2_7:2)'0=O 3.

similarly, putting v=w,_,w, we get

mnw"_l(wn_gw_(n_z) +(n—2)— ’iz)wz 0,

MDCCCLVII. I
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and so on, till we have, finally,

U=, 0, W, _g...T,.2, e e e e e e e (31)
and T, wy(we—3)2=0. . . . . . . . . (32)
The point to be observed is, that every value of z which satisfies (32.) will give a value
of u, satisfying (30.); hence, although the complete value of z will contain n+2 con-
stants, it is certain that » of them will be destroyed by the n direct operations of the
expression (31.). In general, the two constants left are those introduced by the inverse
operation (»3—4¢*)~"; but in the exceptional cases noticed above, one of these disappears,
and one of those introduced by the other inverse operations remains instead.

18. The complete value of u,; in its most general form, is therefore

u_..m'nﬁrn_l..m’l(mg—iz)—lm'l‘lw;‘...m';l.o. P i e e (33)

. Load N L
It was shown before that =»,w,_,...w =(sin A)‘”(sm § 75 sin 9) ; 1n like manner we

d\~! L . . . .
have wl—lm;l"‘“;l:'(sin—G(%) sTxli—6> (sin d)”, the latter operation being the inverse of

the former.
2 -1
The expression (wj—¢*)~"! is equivalent to ((%) -u-7?> , if t=log tan%; and this

may be resolved into either of the two following forms; namely,
1(/d N\ [(d N\
(@) —(@+)

, | d, N"'(d_\"

or (;ﬁiz) <3—t+z) .

The former, omitting the useless factor &, gives

(tan6>'<je)—lsilo<cot > (c ot 2 )(je)_lmio(tang)i;

the latter, taking the lower signs, gives

t —e- % i -1 1 to 2% d -1 1 6 [
(tn3) () swa(eots) () swa(tans)

Either of these expressions is to be substituted in (83.), and thus the complete value
of u, is obtained by means of #n+-2 integrations, and » differentiations. In general the

n integrations implied in the expression (S s ( d@) o 0) 0 are useless, so that we may

substitute 0 for this expression, as was done in the process first given, without ultimate
loss of completeness.

19. If we suppose ¢ an integer, and less than #, we may stop the process of art. 17 at
an earlier stage, thus
Uy =T, By - T4
and '
T, T w2 =0,
so that we now have
Uy =T, @y s By @18 w0
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or, reducing as before, and observing that =2} is equivalent to

(sin ())"(t%>—l(sin o)1,
we have, finally,

n—1i -1 - ne~it1
,=(sin 9)“”(sin0§%sin 0) (sin 9)”(%) (sin 9)_2i<si—:1—0 (gg) 1 Sll“ﬁ‘o) 0. . (34)

If in this expression we put 0 for the result of all but one of the operations indicated in
the last term, we reproduce the form (21.) obtained in art. 9, which appears in fact to
be always complete. The form (34.), however, as before remarked, will never contain
superfluous constants. »

20. Tt is an interesting question whether the forms thus obtained on the supposition
that ¢ is an integer, are not really general, inasmuch as they are expressible without:
reference to that supposition. I believe that they are; but I doubt whether, in the
existing state of analysis, it can be proved either that they are or are not (see § IV.).

21. It is easy to obtain other forms analogous to those given in the preceding articles,
containing inverse in place of direct operations. But such forms are objectionable,
because they necessarily give rise to superfluous constants, the discrimination of which
may be a matter of difficulty.

Secrion IV.

22. It was observed at the beginning of this paper that the equation

du | d | d%
@ Tt =0,

when transformed to polar coordinates, may be written in the form

{(sinb‘d%y-i-(%>2+(sin0)2rj—r(¢%+l>}u=0. .. (35)

T do not know whether this form has been noticed; but it is remarkable in this respect,
that if the symbol 7'%, be replaced by =, it becomes identical with the equation discussed

in the first section, and of which the solution was shown to be

(sin 0) sinég—osinoy{f(e‘“’:‘tang>+F(e‘q’mtan%)}. ... (36)

It is not easy to verify, by direct substitution, that this expression satisfies the differential
equation of which it is the solution; at least I have not yet succeeded in doing so; and
even if this were accomplished, it is most likely that difficulties would remain to be
overcome before we could establish the legitimacy of extending. this result to the case in
which  is a symbol of unlimited signification. Still it seems worth while to try, at
least as an experiment, the consequence of assuming that the form (36.) will give the

solution of (35.) on putting 7"% instead of n.
12
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Omitting the second arbitrary function to save space, we should have (observing that
r must be considered to enter the arbitrary functions in an arbitrary manner)

.2 AN —
u:(smé)—"35<sin06%sm0) d"f(r, eq’““tang).. oo (3T

23. There is no difficulty in the interpretation of this expression. It is only neces-

d .
sary to recollect that ¢ @ p(x)=¢(cx), and we have the following result :—let siLne =p, then

. .d . —
u:’:f(gsm()%smé,e‘”"tang) Coe o (88)

where ¢ is to be put = ﬁ-é after all other operations, and the function must be supposed

to be developed as if the two symbols ¢ sin 00% sin 4, ¢?¥=1 tan% were commutative, the

powers of the former being always prefixed to those of the latter.

It is easy to derive from the form (38.), particular expressions which we already know
to be solutions of (35.). For example, supplying the other arbitrary function, it is
evident that if we take f{z, y)=214", and F(«, y) the same, we get

. Y AN g
w=r"(sin (J)"”(sm 0 sin 0) (tan %) cos % @,

which, we know, satisfies (35.).
Again, we may take f (#, y)=¢", or

Y A
psin®—sing
=¢ @ 1

which has been already shown (art. 6) to represent
(1—2r cos 041>)-%.

These verifications afford, I think, ground to believe that the form (87.) is a true solution
of the equation (35.). And here I leave the subject, hoping that it may attract the
attention of some mathematician more able than myself to bring it to a satisfactory
conclusion.

Note on the last paragraph.

Received December 6, 1856.

If the expression f(g sih 0% sin 4, ¢®Y~"tan g) be supposed to be developed and

arranged according to powers of the term ¢ sin 4 g@ sin 4, each term in the result will be of

the form

. . . K — A
7"(sin 0)""(31’11 0;% sin 0) Y, (e‘” ~!tan 5),
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<), representing a function of which the form may be considered to depend in an arbi-
trary manner upon the value of n. Now we know that every such term as the above
satisfies the differential equation, and it may be asked, what more is required to prove
‘the correctness of the solution? I answer, that the point in question is whether

. » 8
3.7(sin 0)‘”(sin9t%sm 9) %(e‘”mtan 5) N 09|
is equivalent to the most general interpretation of
d
. . . \'% 9
(sin 0)‘%%<sm (Jd% sin 9) “fr, €' tan 5) ;
and, if not, whether the most general interpretation would satisfy the Differential Equa-
tion (39.).

The expression (A.) gives, in fact, no new result, being an evident consequence of the
conclusions of the former sections.

Postscrier (Added May 29, 1857).

Mr. CaviEy has been kind enough to communicate to me direct verifications of the
equation (27.), art. 14, and of the identity referred to in art. 16. Assuming a formula
established in Mr. CAYLEY'S paper “ On certain Formule for Differentiation,” &c.*, the
former of the two theorems just mentioned is easily obtained, the latter not without a
good deal of trouble. The investigations of Section II. may be compared with some of
those in the Introduction to MURPHY’s  Electricity;” but I have not at present examined
the latter with a view to such comparison, and therefore merely mention the subject.

* Cambridge and Dublin Journal, vol. ii. p. 124, equation (2.).



